The mechanochemical production of phenyl cations through heterolytic bond scission.
نویسندگان
چکیده
High mechanical forces applied to polymeric materials typically induce unselective chain scission. For the last decade, mechanoresponsive molecules, mechanophores, have been designed to harness the mechanical energy applied to polymers and provide a productive chemical response. The selective homolysis of chemical bonds was achieved by incorporating peroxide and azo mechanophores into polymer backbones. However, selective heterolysis in polymer mechanochemistry is still mostly unachieved. We hypothesized that highly polarized bonds in ionic species are likely to undergo heterolytic bond scission. To test this, we examined a triarylsulfonium salt (TAS) as a mechanophore. Poly(methyl acrylate) possessing TAS at the center of the chain (PMA-TAS) is synthesized by a single electron transfer living radical polymerization (SET-LRP) method. Computational and experimental studies in solution reveal the mechanochemical production of phenyl cations from PMA-TAS. Interestingly, the generated phenyl cation reacts with its counter-anion (trifluoromethanesulfonate) to produce a terminal trifluoromethyl benzene structure that, to the best of our knowledge, is not observed in the photolysis of TAS. Moreover, the phenyl cation can be trapped by the addition of a nucleophile. These findings emphasize the interesting reaction pathways that become available by mechanical activation.
منابع مشابه
Inverted substrate preferences for photochemical heterolysis arise from conical intersection control.
Heterolytic bond scission is a staple of chemical reactions. While qualitative and quantitative models exist for understanding the thermal heterolysis of carbon-leaving group (C-LG) bonds, no general models connect structure to reactivity for heterolysis in the excited state. CASSCF conical intersection searches were performed to investigate representative systems that undergo photoheterolysis ...
متن کاملBond fission in monocationic frameworks: diverse fragmentation pathways for phosphinophosphonium cations.
A series of phosphinophosphonium cations ([R2PPMe3]+; R = Me, Et, i Pr, t Bu, Cy, Ph and N i Pr2) have been prepared and examined by collision-induced dissociation (CID) to determine the fragmentation pathways accessible to these prototypical catena-phosphorus cations in the gas-phase. Experimental evidence for fission of P-P and P-E (E = P, C) bonds, and β-hydride elimination has been obtained...
متن کاملInfluence of solvent composition on the kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl].
The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selec...
متن کاملSynthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+
The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...
متن کاملMechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity
Iron porphyrins are well known for their ability to catalyze the oxidation of hydrocarbons by hydrogen peroxide and by organic peroxides in general. While many mechanistic studies have been reported, a complete description of the reaction pathway by which the olefin epoxidation occurs has emerged only recently as a result of the work reported by the authors. The aim of this review is to present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 170 شماره
صفحات -
تاریخ انتشار 2014